

Real-Time Workshop Embedded
Coder Release Notes

The “Real-Time Workshop Embedded Coder 3.2.1 Release Notes” on
page 1-1 describe changes included in the latest version of the Real-Time
Workshop Embedded Coder, Version 3.2.1. The release notes discuss the
following topics:

• “New Features” on page 1-2

• “Major Bug Fixes” on page 1-4

• “Known Software and Documentation Problems” on page 1-5

Note Real-Time Workshop Embedded Coder 3.2.1 requires R13SP1.

If you are upgrading from a version earlier than Version 3.2, you should
also see these sections:

• “Real-Time Workshop Embedded Coder 3.2 Release Notes” on page 2-1

• “Real-Time Workshop Embedded Coder 3.1 Release Notes” on page 3-1

• “Real-Time Workshop Embedded Coder 3.0.1 Release Notes” on page 4-1

• “Real-Time Workshop Embedded Coder 3.0 Release Notes” on page 5-1

• “Real-Time Workshop Embedded Coder 2.0 Release Notes” on page 6-1

Printing the Release Notes
If you would like to print the Release Notes, you can link to a PDF version.

iii

Contents

1

Real-Time Workshop Embedded Coder 3.2.1 Release
Notes

New Features . 1-2
ERT Code Deployment Aids Added to GUI 1-2

Major Bug Fixes . 1-4

Known Software and Documentation Problems 1-5

2

Real-Time Workshop Embedded Coder 3.2 Release
Notes

New Features . 2-2
Advanced Code Generation Techniques Documented 2-2
New Code Generation Options . 2-2
Auto-Configuration of Models for Code Generation 2-4
Optimized ERT Targets for Fixed-Point
and Floating-Point Code Generation . 2-5
Code Templates for Customizing Generated Code 2-5
Custom File Banner Generation . 2-6
Passing Model I/O Arguments to the model_step
Function . 2-6

3

Real-Time Workshop Embedded Coder 3.1 Release
Notes

New Features . 3-2
Model Assistant Tool . 3-2

Major Bug Fixes . 3-7

iv

4

Real-Time Workshop Embedded Coder 3.0.1 Release
Notes

Major Bug Fixes . 4-2

5

Real-Time Workshop Embedded Coder 3.0 Release
Notes

New Features . 5-2
New User’s Guide . 5-2
Auto-Generated Main Program . 5-2
Code Generation Options . 5-4
ECRobot Target Example . 5-6
External Mode Support . 5-7
GetSet Custom Storage Class for Data Store Memory 5-8
Hierarchical Parameter Structures . 5-8
Real-Time Model Structure Replaces
Real-Time Object and Logging Object . 5-9
Reusable Code Generation . 5-9
Revised Packaging of Generated Code Files 5-10
Template Makefile for Tornado . 5-12

Major Bug Fixes . 5-13
Fixed Incorrect Effects of Expression Folding for
Action Subsystems . 5-13
Removed License Restriction on Loading Objects
with Custom Storage Classes . 5-13

Upgrading from an Earlier Release . 5-14
Changes to Main Program Module (ert_main.c) 5-14
HTML Code Generation Report Changes 5-14
Include Model Name in Exported Structures
Option Superseded . 5-14
Replace Obsolete Header File #includes 5-15
Update Your Custom System Target Files 5-15

v

6

Real-Time Workshop Embedded Coder
2.0 Release Notes

Release Summary . 6-2

New Features . 6-3
Custom Storage Classes for Data Objects 6-3
Enhanced Code Generation Options . 6-3
Virtualized Output Ports Optimization 6-4
Improved HTML Code Generation Report 6-4

vi Contents

1
Real-Time Workshop Embedded Coder
3.2.1 Release Notes

New Features 1-2
ERT Code Deployment Aids Added to GUI 1-2

Major Bug Fixes 1-4

Known Software and Documentation Problems 1-5

1 Real-Time Workshop Embedded Coder 3.2.1 Release Notes

1-2

New Features
This section summarizes the new features and enhancements introduced in the
Real-Time Workshop Embedded Coder 3.2.1.

ERT Code Deployment Aids Added to GUI
A new group of buttons has been added to the Embedded Real-Time (ERT)
target options in the Real-Time Workshop pane of the Simulation
Parameters dialog box. To access these buttons, select ERT code deployment
aids from Category menu, as shown in the figure below.

The ERT code deployment aids buttons provide quick access to features and
information that can help you to optimize your generated code. The buttons
are:

• Model Assistant Tool - documentation: Click this button to view online
help for the Model Assistant Tool in the MATLAB Help browser. You can also
view this help by typing the MATLAB command
modelassistant('help')

• Model Assistant Tool - configuration: Click this button to open the Model
Assistant Tool for configuration of options.

• Target code customization guide: Click this button to view the “Advanced
Code Generation Features,” chapter of the Real-Time Workshop Embedded

New Features

1-3

Coder online documentation. The chapter documents useful code generation,
optimization, and customization techniques for the ERT target. Most of the
features described were introduced in the Real-Time Workshop Embedded
Coder 3.2 (see Chapter 2, “Real-Time Workshop Embedded Coder 3.2
Release Notes” for a summary).

• Block summary support table: Click this button to view the Simulink Block
Data Type Support Table in the MATLAB Help Browser. The table describes
the data types that are supported by the blocks in the main Simulink and
Fixed-Point libraries. The table also identifies blocks that are suitable for
production code generation. You can also view the table by typing the
MATLAB command
showblockdatatypetable

• Tutorial: Click this button to open an interactive Real-Time Workshop
Embedded Coder tutorial demo in the in the MATLAB Help Browser. You
can also view the tutorial demo by typing the MATLAB command
ecodertutorial

• Demos: Click this button to open the Real-Time Workshop Embedded Coder
demo suite. You can also view the demos by typing the MATLAB command

ecoderdemos

1 Real-Time Workshop Embedded Coder 3.2.1 Release Notes

1-4

Major Bug Fixes
Real-Time Workshop Embedded Coder 3.2.1 includes important bug fixes
made since Version 3.2.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

If you are upgrading from a release earlier than Version 3.1, then you should
also see “Major Bug Fixes” on page 3-7 of the Real-Time Workshop Embedded
Coder 3.0.1 Release Notes.

Known Software and Documentation Problems

1-5

Known Software and Documentation Problems
This section includes a link to a description of known software and
documentation problems in Version 3.2.1 and prior.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

1 Real-Time Workshop Embedded Coder 3.2.1 Release Notes

1-6

2
Real-Time Workshop Embedded Coder
3.2 Release Notes

New Features 2-2
Advanced Code Generation Techniques Documented 2-2
New Code Generation Options 2-2
Auto-Configuration of Models for Code Generation 2-4
Optimized ERT Targets for Fixed-Point

and Floating-Point Code Generation 2-5
Code Templates for Customizing Generated Code 2-5
Custom File Banner Generation 2-6

Passing Model I/O Arguments to the model_step
Function . 2-6

2 Real-Time Workshop Embedded Coder 3.2 Release Notes

2-2

New Features
This section summarizes the new features and enhancements introduced in the
Real-Time Workshop Embedded Coder 3.2.

Advanced Code Generation Techniques Documented
A new chapter, “Advanced Code Generation Features,” has been added to the
the Real-Time Workshop Embedded Coder User’s Guide. This chapter contains
complete information on the new features that are summarized in these release
notes. In addition, the chapter documents useful code generation, optimization,
and customization techniques that have not received wide exposure in previous
releases. These include

• How to specify target characteristics (such as word sizes for C data types) for
the build process, so that generated code is correct for deployment on target
hardware

• A general hook file mechanism for adding target-specific customizations to
the build process

New Code Generation Options
Several new code generation options have been added, and some changes have
been made to the layout of Embedded Real-Time (ERT) target code generation
options in the Real-Time Workshop pane of the Simulation Parameters
dialog box.

Options Layout Changes and Additions
The Suppress error status in real-time model data structure option has
been relocated to the ERT code generation options (2) category, as shown
in this figure.

New Features

2-3

A new code generation option, Pass model I/O arguments as structure
reference, is now available in the ERT code generation options (3)
category, as shown below. This option is described in “Passing Model I/O
Arguments to the model_step Function” on page 2-6.

A new group of options supporting use of code templates, a powerful and simple
technique for customizing generated code, has been added. These options are
available in the ERT code templates category of the Real-Time Workshop
pane of the Simulation Parameters dialog (see the figure below). Code

2 Real-Time Workshop Embedded Coder 3.2 Release Notes

2-4

templates are summarized in “Code Templates for Customizing Generated
Code” on page 2-5.

Auto-Configuration of Models for Code Generation
The Real-Time Workshop Embedded Coder now supports automated
configuration of all (or selected) model parameters during the code generation
process. By automatically configuring a model in this way, you can avoid
manually configuring models. This saves time and eliminates potential errors.

Auto-configuration is performed by executing an M-file (referred to as a hook
file) that is executed as part of the the target build process. Therefore,
auto-configuration becomes a function of the target that invokes the hook file.
You can direct the automatic configuration process to save existing model
settings before code generation and restore them afterwards, so that the user’s
manually chosen options are not disturbed.

The automatic configuration process, and utilities provided to support
auto-configuration, are described in the “Advanced Code Generation Features”
chapter of the Real-Time Workshop Embedded Coder User’s Guide.

New Features

2-5

Optimized ERT Targets for Fixed-Point
and Floating-Point Code Generation
To make it easier for you to customize a hook file that is optimized for your
target hardware, Real-Time Workshop Embedded Coder provides two variants
of the ERT target:

• RTW Embedded Coder (auto configures for optimized fixed-point
code): To optimize for fixed-point code generation, select this target from the
System Target File Browser.

• RTW Embedded Coder (auto configures for optimized floating-point
code): To optimize for floating-point code generation, select this target from
the System Target File Browser.

The use of these targets is detailed in the “Advanced Code Generation
Features” chapter of the Real-Time Workshop Embedded Coder User’s Guide.

Code Templates for Customizing Generated Code
The ERT target now supports use of custom file processing templates (CFP
templates).

A CFP template is a Target Language Compiler (TLC) file that calls a
high-level applications programming interface (API), referred to as the code
template API. The code template API simplifies generation of custom source
code by letting you

• Generate virtually any type of source (.c) or header (.h) file. A CFP template
can emit code to the standard generated model files (e.g., model.c, model.h,
etc.) or generate files that are independent of model code.

• Organize generated code into sections (such as includes, typedefs, functions,
and more). Your CFP template can emit code (e.g., functions), directives
(such as #define or #include statements), or comments into each section as
required.

• Generate code to call model functions such as model_initialize,
model_step, etc.

• Generate code to read and write model inputs and outputs.

• Generate a main program module.

• Obtain information about the model and the files being generated from it.

2 Real-Time Workshop Embedded Coder 3.2 Release Notes

2-6

CFP templates are described in the “Advanced Code Generation Features”
chapter of the Real-Time Workshop Embedded Coder User’s Guide.

Custom File Banner Generation
The ERT target now supports use of banner templates during code generation.
A banner template is a TLC file that specifies banner and trailer comments
that are emitted to generated source (.c) and header (.h) files. Banner
templates are described in the “Advanced Code Generation Features” chapter
of the Real-Time Workshop Embedded Coder User’s Guide.

Passing Model I/O Arguments to the model_step
Function
A new code generation option, Pass model I/O arguments as structure
reference, lets you control how model inputs and outputs at the root level of
the model are passed in to the model_step function. This option is available in
the ERT code generation options (3) category of the Real-Time Workshop
pane of the Simulation Parameters dialog box. When Generate reusable
code is selected, Pass model I/O arguments as structure reference is
enabled, as shown in this figure.

When Pass model I/O arguments as structure reference is deselected (the
default), each root-level model input and output is passed to model_step as a
separate argument. When this option is selected, all root-level inputs are

New Features

2-7

packed into a struct that is passed to model_step as an argument. Likewise,
all root-level outputs are packed into a struct that is also passed to
model_step as an argument. Selecting Pass model I/O arguments as
structure reference can reduce the number of arguments passed in to
model_step.

See the “Code Generation Options and Optimizations” chapter of the
Real-Time Workshop Embedded Coder User’s Guide documentation for further
details.

2 Real-Time Workshop Embedded Coder 3.2 Release Notes

2-8

3
Real-Time Workshop Embedded Coder
3.1 Release Notes

New Features 3-2
Model Assistant Tool 3-2

Major Bug Fixes 3-7

3 Real-Time Workshop Embedded Coder 3.1 Release Notes

3-2

New Features
This section summarizes the new features and enhancements introduced in the
Real-Time Workshop Embedded Coder 3.1.

Model Assistant Tool
The Model Assistant Tool is a utility that lets you configure a model for code
generation quickly. The Model Assistant Tool also helps you to identify aspects
of your model that impede production deployment or limit code efficiency. You
can use the Model Assistant Tool at any point in your design cycle, as it is
completely independent from the code generation process.

The Model Assistant Tool is designed primarily for use with Real-Time
Workshop Embedded Coder. It works most effectively with the Embedded
Real-Time (ERT) target and with ERT-based targets (such as the Embedded
Target for Motorola MPC555). It will also operate with other targets.

The figure below shows the top-level window of the Model Assistant Tool.

New Features

3-3

Four main components of the Model Assistant Tool provide a powerful and
centralized interface for configuring settings for Simulink blocks, Stateflow
charts, models and subsystems. You select these components via the four
buttons at the top of the Model Assistant display:

• General Code Generation Goals
• Detailed Code Generation Goals
• Model Advisor
• Search and Modify

These components are summarized in the next sections.

3 Real-Time Workshop Embedded Coder 3.1 Release Notes

3-4

General Code Generation Goals
This component lets you quickly configure code generation settings based on
specific goals, such as whether to optimize for RAM or ROM usage. Once you
have decided the overall optimization and trade-offs for your application, the
Model Assistant Tool will select the model settings that best suit your goals.

Detailed Code Generation Goals
This component presents a centralized interface to the available code
generation options. Options are grouped by category, and are applied across
products.

Model Advisor
The Model Advisor component is is particularly useful early in the design cycle.
It provides an analysis of your model to ensure that you best utilize Real-Time
Workshop Embedded Coder. You can check selected aspects of your model
settings (for example, to identify possible inefficiencies such as blocks that
generate saturation and rounding code) or choose Select All for a
comprehensive analysis.

Search and Modify
This component is a powerful model search and modify engine. It reduces the
effort of configuring a model block by block. The search feature helps you find
attributes of blocks, lines, input ports, output ports, and annotations quickly.
The modify feature lets you perform rapid batch operations on the search
results. Frequently performed tasks are packaged conveniently into a single
button click.

The Search and Modify component includes the following features:

• The Frequent tasks page lets you quickly perform common actions.

• The Simulink object search page lets you specify a general Simulink object
search and modify action. This search mechanism is useful when you know
the specific names of underlying attributes.

New Features

3-5

• The Stateflow object search page lets you quickly configure the Stateflow
data in your model. This is particularly useful for converting data from
floating point to fixed-point types.

• The Search and replace Simulink text page lets you quickly modify text for
objects in Simulink. For example, you can change all occurrences of 'K1' to
'K2'. The semantics of the search and replace are the same as for the
Stateflow search and replace tool that ships with Stateflow.

• Two Parameter name search mechanisms are provided:

- Search and modify parameters using prompt strings. This search
mechanism is useful when you know the parameter by its dialog prompt
string, but you don't know the name of the underlying attribute.

- “Fuzzy” search using property and/or value pairs. This search mechanism
is useful for isolating the name of an underlying attribute.

Using the Model Assistant Tool
You run Model Assistant Tool from the MATLAB command line, via the
modelassistant command. Before invoking the Model Assistant Tool, make
sure that the desired target (such as the ERT target) is selected in the Target
Configuration section of the Real-Time Workshop pane of the Simulation
Parameters dialog box.

The following examples illustrate the modelassistant command syntax and
its possible arguments.

To obtain detailed help on the Model Assistant Tool, type

modelassistant('help')

To invoke the Model Assistant Tool for the root system of a model, type

modelassistant('model_name')

where model_name is the name of the model.

To invoke the Model Assistant Tool for a particular system in a model, type

modelassistant('system_name')

where systen_name is the name of the system.

3 Real-Time Workshop Embedded Coder 3.1 Release Notes

3-6

You can also invoke the Model Assistant Tool for models and systems using the
built-in Simulink bdroot, gcb, and gcs commands. For example:

modelassistant(gcs)

Further Help and Demos
The above sections have summarized the main features of the Model Assistant
Tool. To obtain full online documentation on the Model Assistant Tool, type

modelassistant('help')

There are also three demo models available for the Model Assistant Tool:
advisordemo1, advisordemo2, and advisordemo3.

Major Bug Fixes

3-7

Major Bug Fixes
Real-Time Workshop Embedded Coder 3.1 includes several important bug
fixes made since Version 3.0.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

If you are upgrading from a version earlier than Version 3.0.1, then you should
also see “Major Bug Fixes” on page 4-2 of the Real-Time Embedded Coder 3.0.1
Release Notes.

3 Real-Time Workshop Embedded Coder 3.1 Release Notes

3-8

4
Real-Time Workshop Embedded Coder
3.0.1 Release Notes

Major Bug Fixes 4-2

4 Real-Time Workshop Embedded Coder 3.0.1 Release Notes

4-2

Major Bug Fixes
Real-Time Workshop Embedded Coder 3.0.1 includes several important bug
fixes made since Version 3.0.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

If you are upgrading from a release earlier than Release 13, then you should
also see “Major Bug Fixes” on page 5-13 of the Real-Time Embedded Coder 3.0
Release Notes.

5
Real-Time Workshop Embedded Coder
3.0 Release Notes

New Features 5-2
New User’s Guide 5-2
Auto-generated Main Program 5-2
Code Generation Options 5-4
ECRobot Target Example 5-6
External Mode Support 5-7
GetSet Custom Storage Class for Data Store Memory 5-8
Hierarchical Parameter Structures 5-8
Real-Time Model Structure Replaces

Real-Time Object and Logging Object 5-9
Reusable Code Generation 5-9
Revised Packaging of Generated Code Files 5-10
Template Makefile for Tornado 5-12

Major Bug Fixes 5-13
Fixed Incorrect Effects of Expression Folding for Action

 Subsystems 5-13
Removed License Restriction on Loading Objects with

Custom Storage
 Classes . 5-13

Upgrading from an Earlier Release 5-14
Changes to Main Program Module (ert_main.c) 5-14
HTML Code Generation Report Changes 5-14
Include Model Name in Exported Structures

Option Superseded 5-14
Replace Obsolete Header File #includes 5-15
Update Your Custom System Target Files 5-15

5 Real-Time Workshop Embedded Coder 3.0 Release Notes

5-2

New Features
This section summarizes the new features and enhancements introduced in the
Real-Time Workshop Embedded Coder 3.0.

If you are upgrading from a release earlier than Release 12.1, then you should
see the Real-Time Workshop Embedded Coder 2.0 “Release Summary” on
page 6-2. For an introduction to the Real-Time Workshop Embedded Coder and
for information about demos for the product, see the “Product Overview”
section of the Real-Time Workshop Embedded Coder User’s Guide.

New User’s Guide
The Real-Time Workshop Embedded Coder is now documented in a separate
manual, the Real-Time Workshop Embedded Coder User’s Guide. The new
manual includes and updates the information about the Real-Time Workshop
Embedded Coder that was formerly included in the Real-Time Workshop
documentation.

The new manual also includes an appendix on generating ASAP2 files.

Auto-Generated Main Program
The new Generate an example main program option lets you generate a fully
commented, model-specific example main program module, ert_main.c. The
code requires minimal modification for deployment in your environment. You
can generate the example main program as either

• A bare-board program designed to run under control of a real-time clock,
without a real-time operating system

• An example showing how to deploy the code under the VxWorks real-time
operating system

By default, Generate an example main program is on. Note that once you
have generated and customized the main program, you should take care to
avoid overwriting your customized version.

See the “Data Structures and Program Execution” section of the section of the
Real-Time Workshop Embedded Coder User’s Guide for further information
about the operation of the main program module.

New Features

5-3

The Real-Time Workshop Embedded Coder continues to provide a static
(non-generated) version of ert_main.c as a template example for developing
embedded applications. To use the static version of ert_main.c (or continue
using a customized version):

• Turn Generate an example main program off.

• Read the next section, “Modifying the Static Main Program Module” and
make changes to ert_main.c as required by your application.

Modifying the Static Main Program Module
This section describes modifications you may need to make to use the static
version of ert_main.c (or continue using a customized version):

• The multi-rate scheduling code that was in ert_main.c is now generated
with the model code. Therefore, if your model has multiple rates, note that
multi-rate systems will not operate correctly unless:

- The multirate scheduling code is removed. The relevant code is tagged
with the keyword REMOVE in comments. (See also the Version 3.0 comments
in ert_main.c.)

- Use the MODEL_SETEVENTS macro (defined in ert_main.c) to set the event
flags instead of accessing the flags directly. The relevant code is tagged
with the keyword REPLACE in comments.

• Remove old #include ertformat.h directives. ertformat.h is no longer
required, and will be obsoleted in a future release. The following macros,
formerly defined in ertformat.h, are now defined within ert_main.c:
EXPAND_CONCAT
CONCAT
MODEL_INITIALIZE
MODEL_STEP
MODEL_TERMINATE
MODEL_SETEVENTS
RT_OBJ

• If applicable, follow comments in the code regarding where to add code for
reading/writing model I/O and saving/restoring FPU context.

• When the Generate code only and Generate an example main program
options are off, the Real-Time Workshop Embedded Coder generates the file
autobuild.h to provide an interface between the main module and

5 Real-Time Workshop Embedded Coder 3.0 Release Notes

5-4

generated model code. If you create your own static main program module,
you would normally include autobuild.h.

Alternatively, you can suppress generation of autobuild.h, and include
model.h directly in your main module. To suppress generation of
autobuild.h, use the following statement in your system target file:
%assign AutoBuildProcedure = 0

• If you have cleared the Terminate function required option, remove or
comment out the following in your production version of ert_main.c:

- The #if TERMFCN... compile-time error check

- The call to MODEL_TERMINATE

• If you do not want to combine output and update functions, clear the Single
output/update function option and make the following changes in your
production version of ert_main.c:

- Replace calls to MODEL_STEP with calls to MODEL_OUTPUT and
MODEL_UPDATE.

- Remove the #if ONESTEPFCN... error check.

• The static ert_main.c module does not support the Generate Reusable
Code option. Use this option only if you are generating a main program. The
following error check will raise a compile-time error if Generate Reusable
Code is used illegally:
#if MULTI_INSTANCE_CODE==1

• The static ert_main.c module does not support the External Mode option.
Use this option only if you are generating a main program. The following
error check will raise a compile-time error if External Mode is used illegally:

#ifdef EXT_MODE

Code Generation Options
This section describes new Real-Time Workshop Embedded Coder code
generation options. These options are available via the ERT code generation
options menus of the Real-Time Workshop pane of the Simulation
Parameters dialog box.

New Features

5-5

External Mode
Select this option to generate external mode communications support code in
the target program. See also “External Mode Support” on page 5-7.

Generate an Example Main Program
This option lets you generate a model-specific example main program module.
See “Auto-Generated Main Program” on page 5-2.

Generate Reusable Code
When this option is selected, the Real-Time Workshop Embedded Coder
generates reusable, reentrant code for the model. See “Reusable Code
Generation” on page 5-9.

Parameter Structure
See “Hierarchical Parameter Structures” on page 5-8

Suppress Error Status in Real-Time Model Data Structure
If you do not need to log or monitor error status in your application, select this
option.

By default, the real-time model data structure (rtM) includes an error status
field (data type string). This field lets you log and monitor error messages via
macros provided for this purpose (see model.h). The error status field is
initialized to NULL. If Suppress error status in real-time model data
structure is selected, the error status field is not included in rtM. Selecting this
option may also cause the real-time model data structure to disappear
completely from the generated code.

When generating code for multiple models that will be integrated together,
make sure that the Suppress error status in real-time model data structure
option is set the same for all of the models. Otherwise, the integrated
application may exhibit unexpected behavior. For example, if the option is
selected in one model but not in another, the error status may or may not be
registered by the integrated application.

Do not select Suppress error status in real-time model data structure if the
MAT-file logging option is also selected. The two options are incompatible.

5 Real-Time Workshop Embedded Coder 3.0 Release Notes

5-6

Target Floating Point Math Environment
The Target Floating Point Math Environment pop-up menu provides two
options. If you select the ANSI_C option (the default), the Real-Time Workshop
Embedded Coder generates calls to the ANSI C (ANSI X3.159-1989) math
library for floating point functions. If you select the ISO_C option, Real-Time
Workshop Embedded Coder generates calls to the ISO C (ISO/IEC 9899:1999)
math library wherever possible.

If your target compiler supports the ISO C (ISO/IEC 9899:1999) math library,
we recommend selecting the ISO_C option and setting your compiler’s ISO C
option. This will generate calls to the ISO C functions wherever possible (for
example, sqrtf() instead of sqrt() for single precision data) and ensure that
you obtain the best performance your target compiler offers.

If your target compiler does not support ISO C math library functions, use the
ANSI_C option.

ECRobot Target Example
The ECRobot (Embedded Coder Robot) target is a simple example of a custom
target based on the Real-Time Workshop Embedded Coder. The ECRobot
target was originally developed as a training example for use in classes offered
to Real-Time Workshop Embedded Coder users. In this release, the ECRobot
target is available to all Real-Time Workshop Embedded Coder users as an
example and demonstration.

The ECRobot target files are automatically installed with the Real-Time
Workshop Embedded Coder. Source code files, control files, demonstration
models, and documentation for the target are installed in the directory

matlabroot/toolbox/rtw/targets/ECRobot

Note The ECRobot target requires an operating system kernel, a
cross-compiler and support utilities that are available on the Web. For
instructions on how to obtain and install these utilities, see the file
readme.html in the ECRobot/documentation directory.

New Features

5-7

Note that the ECRobot target uses a Windows-based cross-compiler and other
utilities; it is therefore hosted on Windows 2000 or Windows XP. A UNIX
configuration is not planned.

Programs generated by the ECRobot target run on the Command System
(RCX™) module of the LEGO® MINDSTORMS™ Robotics Invention System
2.0™. This platform affords an inexpensive and simple way to study concepts
and techniques essential to developing a custom embedded target, and to
develop, run and observe generated programs.

The files included with the target illustrate typical approaches to problems
encountered in custom target development, including:

• Interfacing a Real-Time Workshop Embedded Coder generated program to
an external real-time operating system (RTOS) or kernel

• Implementing device drivers, via wrapper S-functions, for use in simulation
and inlined code generation

• Customizing a system target file by adding code generation options and
adding the target to the System Target File Browser

• Customizing a template makefile to use a target specific cross compiler and
download generated code to the target hardware

External Mode Support
The Real-Time Workshop Embedded Coder now includes full support for all
features of Simulink external mode. External mode lets you use your Simulink
block diagram as a front end for a target program that runs on external
hardware or in a separate process on your host computer. External mode allows
you to tune parameters and view or log signals as the target program executes.

The External mode option is available via the ERT code generation options
(2) category of the Real-Time Workshop pane of the Simulation Parameters
dialog box.

See the “External Mode” section of the Real-Time Workshop User’s Guide for
further information.

5 Real-Time Workshop Embedded Coder 3.0 Release Notes

5-8

GetSet Custom Storage Class for Data Store
Memory
A new custom storage class, GetSet, has been added to provide acessor
methods for memory associated with Data Store Memory blocks. This custom
storage class is used in conjunction with Data Store Memory blocks. The
purpose of the GetSet class is to generate code that reads (gets) and writes
(sets) data via functions.

See the “Custom Storage Classes” section of the Real-Time Workshop
Embedded Coder User’s Guide for detailed documentation of the GetSet class.

Hierarchical Parameter Structures
The Parameter structure menu lets you control how parameter data is
generated for reusable subsystems. (If you are not familiar with reusable
subsystem code generation, see “Nonvirtual Subsystem Code Generation
Options” in the Real-Time Workshop User’s Guide for further information.)

The Parameter structure menu is available via the ERT code generation
options (3) menu item of the Real-Time Workshop pane of the Simulation
Parameters dialog box.

The Parameter structure menu is enabled when the Inline parameters
option is on. The menu lets you select the following options:

• Hierarchical: This option is the default. When the Hierarchical option is
selected, the Real-Time Workshop Embedded Coder generates a separate
header file, defining an independent parameter structure, for each
subsystem that meets the following conditions:

- The Reusable function option is selected in the subsystem’s RTW system
code pop-up menu, and the subsystem meets all conditions for generation
of reusable subsystem code.

- The subsystem does not access any parameters other than its own (such as
parameters of the root-level model).

When the Hierarchical option is selected, each generated subsystem
parameter structure is referenced as a substructure of the root-level
parameter data structure, which is therefore called a hierarchical data
structure.

New Features

5-9

• Non-hierarchical: When this option is selected, the Real-Time Workshop
Embedded Coder generates a single parameter data structure. This is a flat
data structure; subsystem parameters are defined as fields within this
structure.

Real-Time Model Structure Replaces
Real-Time Object and Logging Object
The Real-Time Workshop Embedded Coder now encapsulates information
about the root model in the real-time model data structure. We refer to the
real-time model data structure as rtM.

rtM replaces the real-time object (RT_OBJ) and the logging object, which were
used in previous releases. If your code accesses these objects through the
macros provided with previous releases, it will continue to work.

See the “Data Structures and Code Modules” section of the Real-Time
Workshop Embedded Coder User’s Guide for further information.

Reusable Code Generation
The Generate reusable code option lets you generate reusable, reentrant code
from a model or subsystem. When this option is selected, data structures such
as block states, parameters, external outputs, etc. are passed in (by reference)
as arguments to model_step and other generated model functions. These data
structures are also exported via model.h.

In some cases, the Real-Time Workshop Embedded Coder may generate code
that will compile but is not reentrant (although it may still be acceptable for
your application). For example, if a signal or parameter has a storage class
other than Auto, the generated code is not reentrant, because the code must
access the global data directly. To handle such cases, the Reusable code error
diagnostic menu is enabled when Generate reusable code is selected. This
menu offers a choice of three severity levels for diagnostics to be displayed in
such cases:

• None: build proceeds without displaying a diagnostic message
• Warn: build proceeds after displaying a warning message
• Error: build aborts after displaying an error message

5 Real-Time Workshop Embedded Coder 3.0 Release Notes

5-10

In some cases, the Real-Time Workshop Embedded Coder is unable to generate
valid and compilable code. For example, if the model contains any of the
following, the code generated would be invalid:

• A Stateflow chart that outputs function-call events

• An S-Function that is not code-reuse compliant

• A subsystem triggered by a wide function call trigger

In these cases, the build will terminate after reporting the problem.

When Generate reusable code option is not selected (the default), model data
structures are statically allocated and accessed directly in the model code.
Therefore the model code is neither reusable nor reentrant.

Revised Packaging of Generated Code Files
The packaging of generated code into.c and.h files has changed. The following
table summarizes the structure of source code generated by the Real-Time
Workshop Embedded Coder. All code modules described are written to the
build directory.

Note The file packaging of the Real-Time Workshop Embedded Coder differs
slightly (but significantly) from the file packaging employed by the GRT, GRT
malloc, and other non-embedded targets. See the Real-Time Workshop User’s
Guide for further information.

Real-Time Workshop Embedded Coder File Packaging

File Description

model.c Contains entry points for all code implementing the model algorithm
(model_step, model_initialize, model_terminate,
model_SetEventsForThisBaseStep).

model_private.h Contains local defines and local data that are required by the model and
subsystems. This file is included by the generated source files in the
model. You do not need to include model_private.h when interfacing
hand-written code to a model.

New Features

5-11

model.h Defines model data structures and a public interface to the model entry
points and data structures. Also provides an interface to the real-time
model data structure (model_rtM) via accessor macros. model.h is
included by subsystem .c files in the model.

If you are interfacing your hand-written code to generated code for one
or more models, you should include model.h for each model to which you
want to interface.

model_data.c
(conditional)

model_data.c is conditionally generated. It contains the declarations for
the parameters data structure and the constant block I/O data structure.
If these data structures are not used in the model, model_data.c is not
generated. Note that these structures are declared extern in model.h.

model_types.h Provides forward declarations for the real-time model data structure and
the parameters data structure. These may be needed by function
declarations of reusable functions. model_types.h is included by all the
generated header files in the model.

ert_main.c
(optional)

This file is generated only if the Generate an example main program
option is on. (This option is on by default). See “Auto-Generated Main
Program” on page 5-2.

autobuild.h
(optional)

This file is generated only if the Generate code only and Generate an
example main program options are off. See “Auto-Generated Main
Program” on page 5-2.

autobuild.h contains #include directives required by the static version
of the ert_main.c main program module. Since the static ert_main.c is
not created at code generation time, it includes autobuild.h to access
model-specific data structures and entry points.

Real-Time Workshop Embedded Coder File Packaging (Continued)

File Description

5 Real-Time Workshop Embedded Coder 3.0 Release Notes

5-12

If you have interfaced hand-written code to code generated by previous releases
of the Real-Time Workshop Embedded Coder, you may need to remove
dependencies on header files that are no longer generated. Use #include
model.h directives, and remove #include directives referencing any of the
following:

• model_common.h (replaced by model_types.h and model_private.h)

• model_export.h (replaced by model.h)
• model_prm.h (replaced by model_data.c)
• model_reg.h (subsumed by model_.c)

See also “Code Modules” in the Real-Time Workshop Embedded Coder
documentation.

Template Makefile for Tornado
We have provided a simplified version of the Tornado target template makefile
support deployment of Real-Time Workshop Embedded Coder code on the
VxWorks operating system. See matlabroot/rtw/c/ert/ert_tornado.tmf for
details.

model_pt.c
(optional)

Provides data structures that enable a running program to access model
parameters without use of external mode. To learn how to generate and
use the model_pt.c file, see “C API for Parameter Tuning” in the
Real-Time Workshop documentation.

model_bio.c
(optional)

Provides data structures that enable your code to access block outputs.
To learn how to generate and use the model_bio.c file, see “Signal
Monitoring via Block Outputs” in the Real-Time Workshop
documentation.

Real-Time Workshop Embedded Coder File Packaging (Continued)

File Description

Major Bug Fixes

5-13

Major Bug Fixes

Fixed Incorrect Effects of Expression Folding for
Action Subsystems
With expression folding enabled, models containing action subsystems (such
as For Iterator Subsystems or While Iterator Subsystems) could generate
invalid or inefficient code. This problem has been fixed.

Removed License Restriction on Loading Objects
with Custom Storage Classes
In Release 12, the Real-Time Workshop Embedded Coder license was checked
when loading Simulink data objects that contained custom storage classes.
This license dependency has been removed; the license is now checked only
when you generate code with data containing custom storage classes.

If you have created your own subclasses of Simulink data objects that contain
custom storage classes, you should reload your classes into theSimulink Data
Class Designer and regenerate them to remove the license dependency.

5 Real-Time Workshop Embedded Coder 3.0 Release Notes

5-14

Upgrading from an Earlier Release
This section describes the upgrade issues involved in moving from the
Real-Time Workshop Embedded Coder 2.0 to Version 3.0.

Changes to Main Program Module (ert_main.c)
In this release, the Real-Time Workshop Embedded Coder generates a
model-specific example main program module by default. For backwards
compatibility, we continue to provide a static (nongenerated) version of
ert_main.c.

To use the static version of ert_main.c , (or continue using a previously
customized version), note that certain modifications to ert_main.c may be
required. See “Modifying the Static Main Program Module” on page 5-3 for
modification guidelines.

HTML Code Generation Report Changes
In prior releases, the Generate HTML report option was available only for the
Real-Time Workshop Embedded Coder. In the current release, a limited report
is available for all targets (except the S-Function target and the Rapid
Simulation target), while the Real-Time Workshop Embedded Coder continues
to generate a more extensive report.

The Generate HTML report option is now located in the General code
generation options category of the Real-Time Workshop pane of the
Simulation Parameters dialog box. The option is on by default.

See “Generating a Code Generation Report” in the Real-Time Workshop
Embedded Coder User’s Guide for further information.

Include Model Name in Exported Structures
Option Superseded
The Include model name in exported structures option has been superseded
by the more general Prefix model name to global identifiers option. When
this option is on, the Real-Time Workshop prefixes subsystem function names
with the name of the model (model_). In addition, the model name is prefixed
to the names of functions and data structures at the model level. This is useful
in cases where you want to compile and link code from two or more models into
a single executable, without name clashes.

Upgrading from an Earlier Release

5-15

Prefix model name to global identifiers is on by default. The option is located
in the General code appearance options category of the Real-Time Workshop
pane of the Simulation Parameters dialog box.

Replace Obsolete Header File #includes
Generated code is packaged into different files in this release (see “Revised
Packaging of Generated Code Files” on page 5-10). If you have interfaced your
hand-written code to code generated by previous releases of Real-Time
Workshop Embedded Coder, you may need to remove dependencies on header
files that are no longer generated.

Use #include model.h directives, and remove #include directives referencing
any of the following:

• model_common.h

• model_export.h

• model_prm.h
• model_reg.h

Update Your Custom System Target Files
The Real-Time Workshop Embedded Coder template makefile, ert.tmf, now
contains additional identifiers that were not defined in release 12.1 or earlier
releases. If you are using an older system target file (such as a custom target
file based on an earlier version of ert.tlc) with the new ert.tmf file, you
should update the system target file to make sure that no make options are
missing.

All missing makefile options are reported on the MATLAB window during the
build process, so that you can easily update your custom system target files.

5 Real-Time Workshop Embedded Coder 3.0 Release Notes

5-16

6
Real-Time Workshop Embedded Coder

2.0 Release Notes

Release Summary 6-2

New Features 6-3
Custom Storage Classes for Data Objects 6-3
Enhanced Code Generation Options 6-4
Virtualized Output Ports Optimization 6-4
Improved HTML Code Generation Report 6-4

6 Real-Time Workshop Embedded Coder 2.0 Release Notes

6-2

Release Summary
Release 2.0 of the Real-Time Workshop Embedded Coder is a major upgrade,
incorporating

• Significant improvements in efficiency and readability of generated code.

Many improvements in Real-Time Workshop code generation technology are
especially applicable to embedded systems development. These include
expression folding and buffer optimizations. For further information on
these features, see the Real-Time Workshop 4.1 Release Notes.

• Custom storage classes for signal, state, and parameter objects, for
embedded systems development

• Additional and enhanced code generation options

• Improved HTML code generation report

New Features

6-3

New Features
This section introduces the new features and enhancements added in the
Real-Time Workshop Embedded Coder 2.0, since the Real-Time Workshop
Embedded Coder 1.0.

Custom Storage Classes for Data Objects
The Real-Time Workshop Embedded Coder 2.0 implements a number of
predefined custom storage classes that are useful in embedded systems
development. These classes extend the built-in storage classes provided by the
Real-Time Workshop. The built-in classes provide limited control over the form
of the code generated for references signals, parameters, and other types of
data. These storage classes are suitable for a simulation or rapid prototyping
environment, but embedded system designers often require greater control
over the representation of data.

Using Real-Time Workshop Embedded Coder custom storage classes, you can
define and generate constructs such as bit fields or structs from your model,
and easily interface data structures to externally written code.

See “Custom Storage Classes” in the Real-Time Workshop Embedded Coder
User’s Guide for further information.

Note To create Simulink data objects with custom storage classes from
M-code, you must have a Real-Time Workshop Embedded Coder license. To
share data objects of this type with users who do not have the required license,
save the objects in a MAT-file, which the users can load into the MATLAB
workspace.

Enhanced Code Generation Options

Initialize Floats and Doubles to 0.0
This option lets you control how internal storage for floats and doubles is
initialized. You can initialize floats and doubles to the integer bit pattern 0 (all
bits off) or set float and double storage explicitly to the value 0.0.

6 Real-Time Workshop Embedded Coder 2.0 Release Notes

6-4

See “Initialize Floats and Doubles to 0.0” in the Real-Time Workshop
Embedded Coder User’s Guide for further information.

MAT-File Logging Off by Default
In prior releases, the MAT-file logging option was on by default. In Real-Time
Workshop Embedded Coder 2.0, the MAT-file logging option is off by default.
We recommend this setting because it eliminates the extra code and memory
usage required to maintain logging variables.

Virtualized Output Ports Optimization
The virtualized output ports optimization lets you eliminate code and data
storage associated with root output ports under certain conditions.

See “Virtualized Output Ports Optimization” in the Real-Time Workshop
Embedded Coder User’s Guide for further information.

Improved HTML Code Generation Report
The format of the Real-Time Workshop Embedded Coder code generation
report has been enhanced for readability. The “Optimizations” section lists
additional options that will better optimize your code. Links from the report to
the online Real-Time Workshop Embedded Coder documentation have been
expanded.

See “Generating a Code Generation Report” in the Real-Time Workshop
Embedded Coder User’s Guide for further information.

	Real-Time Workshop Embedded Coder 3.2.1 Release Notes
	New Features
	ERT Code Deployment Aids Added to GUI

	Major Bug Fixes
	Known Software and Documentation Problems

	Real-Time Workshop Embedded Coder 3.2 Release Notes
	New Features
	Advanced Code Generation Techniques Documented
	New Code Generation Options
	Auto-Configuration of Models for Code Generation
	Optimized ERT Targets for Fixed-Point and Floating-Point Code Generation
	Code Templates for Customizing Generated Code
	Custom File Banner Generation
	Passing Model I/O Arguments to the model_step Function

	Real-Time Workshop Embedded Coder 3.1 Release Notes
	New Features
	Model Assistant Tool

	Major Bug Fixes

	Real-Time Workshop Embedded Coder 3.0.1 Release Notes
	Major Bug Fixes

	Real-Time Workshop Embedded Coder 3.0 Release Notes
	New Features
	New User’s Guide
	Auto-Generated Main Program
	Code Generation Options
	ECRobot Target Example
	External Mode Support
	GetSet Custom Storage Class for Data Store Memory
	Hierarchical Parameter Structures
	Real-Time Model Structure Replaces Real-Time Object and Logging Object
	Reusable Code Generation
	Revised Packaging of Generated Code Files
	Template Makefile for Tornado

	Major Bug Fixes
	Fixed Incorrect Effects of Expression Folding for Action Subsystems
	Removed License Restriction on Loading Objects with Custom Storage Classes

	Upgrading from an Earlier Release
	Changes to Main Program Module (ert_main.c)
	HTML Code Generation Report Changes
	Include Model Name in Exported Structures Option Superseded
	Replace Obsolete Header File #includes
	Update Your Custom System Target Files

	Real-Time Workshop Embedded Coder 2.0 Release Notes
	Release Summary
	New Features
	Custom Storage Classes for Data Objects
	Enhanced Code Generation Options
	Virtualized Output Ports Optimization
	Improved HTML Code Generation Report

